Additive schemes (splitting schemes) for some systems of evolutionary equations

نویسنده

  • Petr N. Vabishchevich
چکیده

On the basis of additive schemes (splitting schemes) we construct efficient numerical algorithms to solve approximately the initial-boundary value problems for systems of time-dependent partial differential equations (PDEs). In many applied problems the individual components of the vector of unknowns are coupled together and then splitting schemes are applied in order to get a simple problem for evaluating components at a new time level. Typically, the additive operator-difference schemes for systems of evolutionary equations are constructed for operators coupled in space. In this paper we investigate more general problems where coupling of derivatives in time for components of the solution vector takes place. Splitting schemes are developed using an additive representation for both the primary operator of the problem and the operator at the time derivative. Splitting schemes are based on a triangular two-component representation of the operators.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit-implicit Splitting Schemes for Some Systems of Evolutionary Equations

In many applied problems, the individual components of the unknown vector are interconnected and therefore splitting schemes are applied in order to get a simple problem for evaluating unknowns at a new time level. On the basis of additive schemes (splitting schemes), there are constructed efficient computational algorithms for numerical solving the initial value problems for systems of time-de...

متن کامل

Domain decomposition schemes for evolutionary equations of first order with not self-adjoint operators

Domain decomposition methods are essential in solving applied problems on parallel computer systems. For boundary value problems for evolutionary equations the implicit schemes are in common use to solve problems at a new time level employing iterative methods of domain decomposition. An alternative approach is based on constructing iteration-free methods based on special schemes of splitting i...

متن کامل

On a new class of additive (splitting) operator-difference schemes

Many applied time-dependent problems are characterized by an additive representation of the problem operator. Additive schemes are constructed using such a splitting and associated with the transition to a new time level on the basis of the solution of more simple problems for the individual operators in the additive decomposition. We consider a new class of additive schemes for problems with a...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Nonstandard finite difference schemes for differential equations

In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2014